More Efficient Policy Learning via Optimal Retargeting

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(More) Efficient Reinforcement Learning via Posterior Sampling

Most provably-efficient reinforcement learning algorithms introduce optimism about poorly-understood states and actions to encourage exploration. We study an alternative approach for efficient exploration: posterior sampling for reinforcement learning (PSRL). This algorithm proceeds in repeated episodes of known duration. At the start of each episode, PSRL updates a prior distribution over Mark...

متن کامل

TSEB: More Efficient Thompson Sampling for Policy Learning

In model-based solution approaches to the problem of learning in an unknown environment, exploring to learn the model parameters takes a toll on the regret. The optimal performance with respect to regret or PAC bounds is achievable, if the algorithm exploits with respect to reward or explores with respect to the model parameters, respectively. In this paper, we propose TSEB, a Thompson Sampling...

متن کامل

Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Reinforcement learning can acquire tcomplex behaviors from high-level specifications. However, defining a cost function that can be optimized effectively and encodes the correct task is challenging in practice. We explore how inverse optimal control (IOC) can be used to learn behaviors from demonstrations, with applications to torque control of high-dimensional robotic systems. Our method addre...

متن کامل

Efficient Policy Learning

We consider the problem of using observational data to learn treatment assignment policies that satisfy certain constraints specified by a practitioner, such as budget, fairness, or functional form constraints. This problem has previously been studied in economics, statistics, and computer science, and several regret-consistent methods have been proposed. However, several key analytical compone...

متن کامل

Image retargeting via Beltrami representation

Image retargeting aims to resize an image to one with a prescribed aspect ratio. Simple scaling inevitably introduces unnatural geometric distortions on the important content of the image. In this paper, we propose a simple and yet effective method to resize an image, which preserves the geometry of the important content, using the Beltrami representation. Our algorithm allows users to interact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2020

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.2020.1788948